boost/math/special_functions/chebyshev.hpp
// (C) Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_CHEBYSHEV_HPP
#define BOOST_MATH_SPECIAL_CHEBYSHEV_HPP
#include <cmath>
#include <type_traits>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/tools/throw_exception.hpp>
#if (__cplusplus > 201103) || (defined(_CPPLIB_VER) && (_CPPLIB_VER >= 610))
# define BOOST_MATH_CHEB_USE_STD_ACOSH
#endif
#ifndef BOOST_MATH_CHEB_USE_STD_ACOSH
# include <boost/math/special_functions/acosh.hpp>
#endif
namespace boost { namespace math {
template <class T1, class T2, class T3>
inline tools::promote_args_t<T1, T2, T3> chebyshev_next(T1 const & x, T2 const & Tn, T3 const & Tn_1)
{
return 2*x*Tn - Tn_1;
}
namespace detail {
// https://stackoverflow.com/questions/5625431/efficient-way-to-compute-pq-exponentiation-where-q-is-an-integer
template <typename T, typename std::enable_if<std::is_arithmetic<T>::value, bool>::type = true>
T expt(T p, unsigned q)
{
T r = 1;
while (q != 0) {
if (q % 2 == 1) { // q is odd
r *= p;
q--;
}
p *= p;
q /= 2;
}
return r;
}
template <typename T, typename std::enable_if<!std::is_arithmetic<T>::value, bool>::type = true>
T expt(T p, unsigned q)
{
using std::pow;
return pow(p, static_cast<int>(q));
}
template<class Real, bool second, class Policy>
inline Real chebyshev_imp(unsigned n, Real const & x, const Policy&)
{
#ifdef BOOST_MATH_CHEB_USE_STD_ACOSH
using std::acosh;
#define BOOST_MATH_ACOSH_POLICY
#else
using boost::math::acosh;
#define BOOST_MATH_ACOSH_POLICY , Policy()
#endif
using std::cosh;
using std::pow;
using std::sqrt;
Real T0 = 1;
Real T1;
BOOST_MATH_IF_CONSTEXPR (second)
{
if (x > 1 || x < -1)
{
Real t = sqrt(x*x -1);
return static_cast<Real>((expt(static_cast<Real>(x+t), n+1) - expt(static_cast<Real>(x-t), n+1))/(2*t));
}
T1 = 2*x;
}
else
{
if (x > 1)
{
return cosh(n*acosh(x BOOST_MATH_ACOSH_POLICY));
}
if (x < -1)
{
if (n & 1)
{
return -cosh(n*acosh(-x BOOST_MATH_ACOSH_POLICY));
}
else
{
return cosh(n*acosh(-x BOOST_MATH_ACOSH_POLICY));
}
}
T1 = x;
}
if (n == 0)
{
return T0;
}
unsigned l = 1;
while(l < n)
{
std::swap(T0, T1);
T1 = static_cast<Real>(boost::math::chebyshev_next(x, T0, T1));
++l;
}
return T1;
}
} // namespace detail
template <class Real, class Policy>
inline tools::promote_args_t<Real> chebyshev_t(unsigned n, Real const & x, const Policy&)
{
using result_type = tools::promote_args_t<Real>;
using value_type = typename policies::evaluation<result_type, Policy>::type;
using forwarding_policy = typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::chebyshev_imp<value_type, false>(n, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_t<%1%>(unsigned, %1%)");
}
template <class Real>
inline tools::promote_args_t<Real> chebyshev_t(unsigned n, Real const & x)
{
return chebyshev_t(n, x, policies::policy<>());
}
template <class Real, class Policy>
inline tools::promote_args_t<Real> chebyshev_u(unsigned n, Real const & x, const Policy&)
{
using result_type = tools::promote_args_t<Real>;
using value_type = typename policies::evaluation<result_type, Policy>::type;
using forwarding_policy = typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::chebyshev_imp<value_type, true>(n, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_u<%1%>(unsigned, %1%)");
}
template <class Real>
inline tools::promote_args_t<Real> chebyshev_u(unsigned n, Real const & x)
{
return chebyshev_u(n, x, policies::policy<>());
}
template <class Real, class Policy>
inline tools::promote_args_t<Real> chebyshev_t_prime(unsigned n, Real const & x, const Policy&)
{
using result_type = tools::promote_args_t<Real>;
using value_type = typename policies::evaluation<result_type, Policy>::type;
using forwarding_policy = typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type;
if (n == 0)
{
return result_type(0);
}
return policies::checked_narrowing_cast<result_type, Policy>(n * detail::chebyshev_imp<value_type, true>(n - 1, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_t_prime<%1%>(unsigned, %1%)");
}
template <class Real>
inline tools::promote_args_t<Real> chebyshev_t_prime(unsigned n, Real const & x)
{
return chebyshev_t_prime(n, x, policies::policy<>());
}
/*
* This is Algorithm 3.1 of
* Gil, Amparo, Javier Segura, and Nico M. Temme.
* Numerical methods for special functions.
* Society for Industrial and Applied Mathematics, 2007.
* https://www.siam.org/books/ot99/OT99SampleChapter.pdf
* However, our definition of c0 differs by a factor of 1/2, as stated in the docs. . .
*/
template <class Real, class T2>
inline Real chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const T2& x)
{
using boost::math::constants::half;
if (length < 2)
{
if (length == 0)
{
return 0;
}
return c[0]/2;
}
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*x*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return x*b1 - b2 + half<Real>()*c[0];
}
namespace detail {
template <class Real>
inline Real unchecked_chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const Real & a, const Real & b, const Real& x)
{
Real t;
Real u;
// This cutoff is not super well defined, but it's a good estimate.
// See "An Error Analysis of the Modified Clenshaw Method for Evaluating Chebyshev and Fourier Series"
// J. OLIVER, IMA Journal of Applied Mathematics, Volume 20, Issue 3, November 1977, Pages 379-391
// https://doi.org/10.1093/imamat/20.3.379
const auto cutoff = static_cast<Real>(0.6L);
if (x - a < b - x)
{
u = 2*(x-a)/(b-a);
t = u - 1;
if (t > -cutoff)
{
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*t*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return t*b1 - b2 + c[0]/2;
}
else
{
Real b1 = c[length - 1];
Real d = b1;
Real b2 = 0;
for (size_t r = length - 2; r >= 1; --r)
{
d = 2*u*b1 - d + c[r];
b2 = b1;
b1 = d - b1;
}
return t*b1 - b2 + c[0]/2;
}
}
else
{
u = -2*(b-x)/(b-a);
t = u + 1;
if (t < cutoff)
{
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*t*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return t*b1 - b2 + c[0]/2;
}
else
{
Real b1 = c[length - 1];
Real d = b1;
Real b2 = 0;
for (size_t r = length - 2; r >= 1; --r)
{
d = 2*u*b1 + d + c[r];
b2 = b1;
b1 = d + b1;
}
return t*b1 - b2 + c[0]/2;
}
}
}
} // namespace detail
template <class Real>
inline Real chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const Real & a, const Real & b, const Real& x)
{
if (x < a || x > b)
{
BOOST_MATH_THROW_EXCEPTION(std::domain_error("x in [a, b] is required."));
}
if (length < 2)
{
if (length == 0)
{
return 0;
}
return c[0]/2;
}
return detail::unchecked_chebyshev_clenshaw_recurrence(c, length, a, b, x);
}
}} // Namespace boost::math
#endif // BOOST_MATH_SPECIAL_CHEBYSHEV_HPP