boost/math/special_functions/detail/hypergeometric_1F1_scaled_series.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2017 John Maddock
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
#define BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
#include <array>
#include <cstdint>
namespace boost{ namespace math{ namespace detail{
template <class T, class Policy>
T hypergeometric_1F1_scaled_series(const T& a, const T& b, T z, const Policy& pol, const char* function)
{
BOOST_MATH_STD_USING
//
// Result is returned scaled by e^-z.
// Whenever the terms start becoming too large, we scale by some factor e^-n
// and keep track of the integer scaling factor n. At the end we can perform
// an exact subtraction of n from z and scale the result:
//
T sum(0), term(1), upper_limit(sqrt(boost::math::tools::max_value<T>())), diff;
unsigned n = 0;
long long log_scaling_factor = 1 - lltrunc(boost::math::tools::log_max_value<T>());
T scaling_factor = exp(T(log_scaling_factor));
std::intmax_t current_scaling = 0;
do
{
sum += term;
if (sum >= upper_limit)
{
sum *= scaling_factor;
term *= scaling_factor;
current_scaling += log_scaling_factor;
}
term *= (((a + n) / ((b + n) * (n + 1))) * z);
if (n > boost::math::policies::get_max_series_iterations<Policy>())
return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
++n;
diff = fabs(term / sum);
} while (diff > boost::math::policies::get_epsilon<T, Policy>());
z = -z - current_scaling;
while (z < log_scaling_factor)
{
z -= log_scaling_factor;
sum *= scaling_factor;
}
return sum * exp(z);
}
} } } // namespaces
#endif // BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP