boost/math/special_functions/hypergeometric_0F1.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2014 Anton Bikineev
// Copyright 2014 Christopher Kormanyos
// Copyright 2014 John Maddock
// Copyright 2014 Paul Bristow
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_HYPERGEOMETRIC_0F1_HPP
#define BOOST_MATH_HYPERGEOMETRIC_0F1_HPP
#include <boost/math/policies/policy.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/detail/hypergeometric_series.hpp>
#include <boost/math/special_functions/detail/hypergeometric_0F1_bessel.hpp>
namespace boost { namespace math { namespace detail {
template <class T>
struct hypergeometric_0F1_cf
{
//
// We start this continued fraction at b on index -1
// and treat the -1 and 0 cases as special cases.
// We do this to avoid adding the continued fraction result
// to 1 so that we can accurately evaluate for small results
// as well as large ones. See http://functions.wolfram.com/07.17.10.0002.01
//
T b, z;
int k;
hypergeometric_0F1_cf(T b_, T z_) : b(b_), z(z_), k(-2) {}
typedef std::pair<T, T> result_type;
result_type operator()()
{
++k;
if (k <= 0)
return std::make_pair(z / b, 1);
return std::make_pair(-z / ((k + 1) * (b + k)), 1 + z / ((k + 1) * (b + k)));
}
};
template <class T, class Policy>
T hypergeometric_0F1_cf_imp(T b, T z, const Policy& pol, const char* function)
{
hypergeometric_0F1_cf<T> evaluator(b, z);
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T cf = tools::continued_fraction_b(evaluator, policies::get_epsilon<T, Policy>(), max_iter);
policies::check_series_iterations<T>(function, max_iter, pol);
return cf;
}
template <class T, class Policy>
inline T hypergeometric_0F1_imp(const T& b, const T& z, const Policy& pol)
{
const char* function = "boost::math::hypergeometric_0f1<%1%,%1%>(%1%, %1%)";
BOOST_MATH_STD_USING
// some special cases
if (z == 0)
return T(1);
if ((b <= 0) && (b == floor(b)))
return policies::raise_pole_error<T>(
function,
"Evaluation of 0f1 with nonpositive integer b = %1%.", b, pol);
if (z < -5 && b > -5)
{
// Series is alternating and divergent, need to do something else here,
// Bessel function relation is much more accurate, unless |b| is similarly
// large to |z|, otherwise the CF formula suffers from cancellation when
// the result would be very small.
if (fabs(z / b) > 4)
return hypergeometric_0F1_bessel(b, z, pol);
return hypergeometric_0F1_cf_imp(b, z, pol, function);
}
// evaluation through Taylor series looks
// more precisious than Bessel relation:
// detail::hypergeometric_0f1_bessel(b, z, pol);
return detail::hypergeometric_0F1_generic_series(b, z, pol);
}
} // namespace detail
template <class T1, class T2, class Policy>
inline typename tools::promote_args<T1, T2>::type hypergeometric_0F1(T1 b, T2 z, const Policy& /* pol */)
{
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
return policies::checked_narrowing_cast<result_type, Policy>(
detail::hypergeometric_0F1_imp<value_type>(
static_cast<value_type>(b),
static_cast<value_type>(z),
forwarding_policy()),
"boost::math::hypergeometric_0F1<%1%>(%1%,%1%)");
}
template <class T1, class T2>
inline typename tools::promote_args<T1, T2>::type hypergeometric_0F1(T1 b, T2 z)
{
return hypergeometric_0F1(b, z, policies::policy<>());
}
} } // namespace boost::math
#endif // BOOST_MATH_HYPERGEOMETRIC_HPP