boost/math/special_functions/jacobi_zeta.hpp
// Copyright (c) 2015 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_MATH_ELLINT_JZ_HPP
#define BOOST_MATH_ELLINT_JZ_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/ellint_1.hpp>
#include <boost/math/special_functions/ellint_rj.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/workaround.hpp>
// Elliptic integral the Jacobi Zeta function.
namespace boost { namespace math {
namespace detail{
// Elliptic integral - Jacobi Zeta
template <typename T, typename Policy>
BOOST_MATH_GPU_ENABLED T jacobi_zeta_imp(T phi, T k, const Policy& pol, T kp)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
bool invert = false;
if(phi < 0)
{
phi = fabs(phi);
invert = true;
}
T result;
T sinp = sin(phi);
T cosp = cos(phi);
T c2 = cosp * cosp;
T one_minus_ks2 = kp + c2 - kp * c2;
T k2 = k * k;
if(k == 1)
result = sinp * (boost::math::sign)(cosp); // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi.
else
{
result = k2 * sinp * cosp * sqrt(one_minus_ks2) * ellint_rj_imp(T(0), kp, T(1), one_minus_ks2, pol) / (3 * ellint_k_imp(k, pol, kp));
}
return invert ? T(-result) : result;
}
template <typename T, typename Policy>
BOOST_MATH_GPU_ENABLED inline T jacobi_zeta_imp(T phi, T k, const Policy& pol)
{
return jacobi_zeta_imp(phi, k, pol, T(1 - k * k));
}
} // detail
template <class T1, class T2, class Policy>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)");
}
template <class T1, class T2>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi)
{
return boost::math::jacobi_zeta(k, phi, policies::policy<>());
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_D_HPP