boost/math/special_functions/legendre_stieltjes.hpp
// Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP
#define BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP
/*
* Constructs the Legendre-Stieltjes polynomial of degree m.
* The Legendre-Stieltjes polynomials are used to create extensions for Gaussian quadratures,
* commonly called "Gauss-Konrod" quadratures.
*
* References:
* Patterson, TNL. "The optimum addition of points to quadrature formulae." Mathematics of Computation 22.104 (1968): 847-856.
*/
#include <iostream>
#include <vector>
#include <boost/math/tools/roots.hpp>
#include <boost/math/special_functions/legendre.hpp>
namespace boost{
namespace math{
template<class Real>
class legendre_stieltjes
{
public:
legendre_stieltjes(size_t m)
{
if (m == 0)
{
throw std::domain_error("The Legendre-Stieltjes polynomial is defined for order m > 0.\n");
}
m_m = static_cast<int>(m);
std::ptrdiff_t n = m - 1;
std::ptrdiff_t q;
std::ptrdiff_t r;
if ((n & 1) == 1)
{
q = 1;
r = (n-1)/2 + 2;
}
else
{
q = 0;
r = n/2 + 1;
}
m_a.resize(r + 1);
// We'll keep the ones-based indexing at the cost of storing a superfluous element
// so that we can follow Patterson's notation exactly.
m_a[r] = static_cast<Real>(1);
// Make sure using the zero index is a bug:
m_a[0] = std::numeric_limits<Real>::quiet_NaN();
for (std::ptrdiff_t k = 1; k < r; ++k)
{
Real ratio = 1;
m_a[r - k] = 0;
for (std::ptrdiff_t i = r + 1 - k; i <= r; ++i)
{
// See Patterson, equation 12
std::ptrdiff_t num = (n - q + 2*(i + k - 1))*(n + q + 2*(k - i + 1))*(n-1-q+2*(i-k))*(2*(k+i-1) -1 -q -n);
std::ptrdiff_t den = (n - q + 2*(i - k))*(2*(k + i - 1) - q - n)*(n + 1 + q + 2*(k - i))*(n - 1 - q + 2*(i + k));
ratio *= static_cast<Real>(num)/static_cast<Real>(den);
m_a[r - k] -= ratio*m_a[i];
}
}
}
Real norm_sq() const
{
Real t = 0;
bool odd = ((m_m & 1) == 1);
for (size_t i = 1; i < m_a.size(); ++i)
{
if(odd)
{
t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-1);
}
else
{
t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-3);
}
}
return t;
}
Real operator()(Real x) const
{
// Trivial implementation:
// Em += m_a[i]*legendre_p(2*i - 1, x); m odd
// Em += m_a[i]*legendre_p(2*i - 2, x); m even
size_t r = m_a.size() - 1;
Real p0 = 1;
Real p1 = x;
Real Em;
bool odd = ((m_m & 1) == 1);
if (odd)
{
Em = m_a[1]*p1;
}
else
{
Em = m_a[1]*p0;
}
unsigned n = 1;
for (size_t i = 2; i <= r; ++i)
{
std::swap(p0, p1);
p1 = boost::math::legendre_next(n, x, p0, p1);
++n;
if (!odd)
{
Em += m_a[i]*p1;
}
std::swap(p0, p1);
p1 = boost::math::legendre_next(n, x, p0, p1);
++n;
if(odd)
{
Em += m_a[i]*p1;
}
}
return Em;
}
Real prime(Real x) const
{
Real Em_prime = 0;
for (size_t i = 1; i < m_a.size(); ++i)
{
if(m_m & 1)
{
Em_prime += m_a[i]*detail::legendre_p_prime_imp(static_cast<unsigned>(2*i - 1), x, policies::policy<>());
}
else
{
Em_prime += m_a[i]*detail::legendre_p_prime_imp(static_cast<unsigned>(2*i - 2), x, policies::policy<>());
}
}
return Em_prime;
}
std::vector<Real> zeros() const
{
using boost::math::constants::half;
std::vector<Real> stieltjes_zeros;
std::vector<Real> legendre_zeros = legendre_p_zeros<Real>(m_m - 1);
size_t k;
if (m_m & 1)
{
stieltjes_zeros.resize(legendre_zeros.size() + 1, std::numeric_limits<Real>::quiet_NaN());
stieltjes_zeros[0] = 0;
k = 1;
}
else
{
stieltjes_zeros.resize(legendre_zeros.size(), std::numeric_limits<Real>::quiet_NaN());
k = 0;
}
while (k < stieltjes_zeros.size())
{
Real lower_bound;
Real upper_bound;
if (m_m & 1)
{
lower_bound = legendre_zeros[k - 1];
if (k == legendre_zeros.size())
{
upper_bound = 1;
}
else
{
upper_bound = legendre_zeros[k];
}
}
else
{
lower_bound = legendre_zeros[k];
if (k == legendre_zeros.size() - 1)
{
upper_bound = 1;
}
else
{
upper_bound = legendre_zeros[k+1];
}
}
// The root bracketing is not very tight; to keep weird stuff from happening
// in the Newton's method, let's tighten up the tolerance using a few bisections.
boost::math::tools::eps_tolerance<Real> tol(6);
auto g = [&](Real t) { return this->operator()(t); };
auto p = boost::math::tools::bisect(g, lower_bound, upper_bound, tol);
Real x_nk_guess = p.first + (p.second - p.first)*half<Real>();
std::uintmax_t number_of_iterations = 500;
auto f = [&] (Real x) { Real Pn = this->operator()(x);
Real Pn_prime = this->prime(x);
return std::pair<Real, Real>(Pn, Pn_prime); };
const Real x_nk = boost::math::tools::newton_raphson_iterate(f, x_nk_guess,
p.first, p.second,
tools::digits<Real>(),
number_of_iterations);
BOOST_MATH_ASSERT(p.first < x_nk);
BOOST_MATH_ASSERT(x_nk < p.second);
stieltjes_zeros[k] = x_nk;
++k;
}
return stieltjes_zeros;
}
private:
// Coefficients of Legendre expansion
std::vector<Real> m_a;
int m_m;
};
}}
#endif