Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for a snapshot of the master branch, built from commit 0b22b675f0.

boost/math/tools/polynomial_gcd.hpp

//  (C) Copyright Jeremy William Murphy 2016.
//  (C) Copyright Matt Borland 2021.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_GCD_HPP
#define BOOST_MATH_TOOLS_POLYNOMIAL_GCD_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <algorithm>
#include <type_traits>
#include <boost/math/tools/is_standalone.hpp>
#include <boost/math/tools/polynomial.hpp>

#ifndef BOOST_MATH_STANDALONE
#include <boost/integer/common_factor_rt.hpp>

#else
#include <numeric>
#include <utility>
#include <iterator>
#include <boost/math/tools/assert.hpp>
#include <boost/math/tools/config.hpp>

namespace boost { namespace integer {

namespace gcd_detail {

template <typename EuclideanDomain>
inline EuclideanDomain Euclid_gcd(EuclideanDomain a, EuclideanDomain b) noexcept(std::is_arithmetic<EuclideanDomain>::value)
{
    using std::swap;
    while (b != EuclideanDomain(0))
    {
        a %= b;
        swap(a, b);
    }
    return a;
}

enum method_type
{
    method_euclid = 0,
    method_binary = 1,
    method_mixed = 2
};

} // gcd_detail

template <typename Iter, typename T = typename std::iterator_traits<Iter>::value_type>
std::pair<T, Iter> gcd_range(Iter first, Iter last) noexcept(std::is_arithmetic<T>::value)
{
    BOOST_MATH_ASSERT(first != last);

    T d = *first;
    ++first;
    while (d != T(1) && first != last)
    {
        #ifdef BOOST_MATH_HAS_CXX17_NUMERIC
        d = std::gcd(d, *first);
        #else
        d = gcd_detail::Euclid_gcd(d, *first);
        #endif
        ++first;
    }
    return std::make_pair(d, first);
}

}} // namespace boost::integer
#endif

namespace boost{

   namespace integer {

      namespace gcd_detail {

         template <class T>
         struct gcd_traits;

         template <class T>
         struct gcd_traits<boost::math::tools::polynomial<T> >
         {
            inline static const boost::math::tools::polynomial<T>& abs(const boost::math::tools::polynomial<T>& val) { return val; }

            static const method_type method = method_euclid;
         };

      }
}

namespace math{ namespace tools{

/* From Knuth, 4.6.1:
*
* We may write any nonzero polynomial u(x) from R[x] where R is a UFD as
*
*      u(x) = cont(u) . pp(u(x))
*
* where cont(u), the content of u, is an element of S, and pp(u(x)), the primitive
* part of u(x), is a primitive polynomial over S.
* When u(x) = 0, it is convenient to define cont(u) = pp(u(x)) = O.
*/

template <class T>
T content(polynomial<T> const &x)
{
    return x ? boost::integer::gcd_range(x.data().begin(), x.data().end()).first : T(0);
}

// Knuth, 4.6.1
template <class T>
polynomial<T> primitive_part(polynomial<T> const &x, T const &cont)
{
    return x ? x / cont : polynomial<T>();
}


template <class T>
polynomial<T> primitive_part(polynomial<T> const &x)
{
    return primitive_part(x, content(x));
}


// Trivial but useful convenience function referred to simply as l() in Knuth.
template <class T>
T leading_coefficient(polynomial<T> const &x)
{
    return x ? x.data().back() : T(0);
}


namespace detail
{
    /* Reduce u and v to their primitive parts and return the gcd of their
    * contents. Used in a couple of gcd algorithms.
    */
    template <class T>
    T reduce_to_primitive(polynomial<T> &u, polynomial<T> &v)
    {
        T const u_cont = content(u), v_cont = content(v);
        u /= u_cont;
        v /= v_cont;

        #ifdef BOOST_MATH_HAS_CXX17_NUMERIC
        return std::gcd(u_cont, v_cont);
        #else
        return boost::integer::gcd_detail::Euclid_gcd(u_cont, v_cont);
        #endif
    }
}


/**
* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
* Algorithm 4.6.1C: Greatest common divisor over a unique factorization domain.
*
* The subresultant algorithm by George E. Collins [JACM 14 (1967), 128-142],
* later improved by W. S. Brown and J. F. Traub [JACM 18 (1971), 505-514].
*
* Although step C3 keeps the coefficients to a "reasonable" size, they are
* still potentially several binary orders of magnitude larger than the inputs.
* Thus, this algorithm should only be used where T is a multi-precision type.
*
* @tparam   T   Polynomial coefficient type.
* @param    u   First polynomial.
* @param    v   Second polynomial.
* @return       Greatest common divisor of polynomials u and v.
*/
template <class T>
typename std::enable_if< std::numeric_limits<T>::is_integer, polynomial<T> >::type
subresultant_gcd(polynomial<T> u, polynomial<T> v)
{
    using std::swap;
    BOOST_MATH_ASSERT(u || v);

    if (!u)
        return v;
    if (!v)
        return u;

    typedef typename polynomial<T>::size_type N;

    if (u.degree() < v.degree())
        swap(u, v);

    T const d = detail::reduce_to_primitive(u, v);
    T g = 1, h = 1;
    polynomial<T> r;
    while (true)
    {
        BOOST_MATH_ASSERT(u.degree() >= v.degree());
        // Pseudo-division.
        r = u % v;
        if (!r)
            return d * primitive_part(v); // Attach the content.
        if (r.degree() == 0)
            return d * polynomial<T>(T(1)); // The content is the result.
        N const delta = u.degree() - v.degree();
        // Adjust remainder.
        u = v;
        v = r / (g * detail::integer_power(h, delta));
        g = leading_coefficient(u);
        T const tmp = detail::integer_power(g, delta);
        if (delta <= N(1))
            h = tmp * detail::integer_power(h, N(1) - delta);
        else
            h = tmp / detail::integer_power(h, delta - N(1));
    }
}


/**
 * @brief GCD for polynomials with unbounded multi-precision integral coefficients.
 *
 * The multi-precision constraint is enforced via numeric_limits.
 *
 * Note that intermediate terms in the evaluation can grow arbitrarily large, hence the need for
 * unbounded integers, otherwise numeric overflow would break the algorithm.
 *
 * @tparam  T   A multi-precision integral type.
 */
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_bounded, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
    return subresultant_gcd(u, v);
}
// GCD over bounded integers is not currently allowed:
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_bounded, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
   static_assert(sizeof(v) == 0, "GCD on polynomials of bounded integers is disallowed due to the excessive growth in the size of intermediate terms.");
   return subresultant_gcd(u, v);
}
// GCD over polynomials of floats can go via the Euclid algorithm:
template <typename T>
typename std::enable_if<!std::numeric_limits<T>::is_integer && (std::numeric_limits<T>::min_exponent != std::numeric_limits<T>::max_exponent) && !std::numeric_limits<T>::is_exact, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
    return boost::integer::gcd_detail::Euclid_gcd(u, v);
}

}
//
// Using declaration so we overload the default implementation in this namespace:
//
using boost::math::tools::gcd;

}

namespace integer
{
   //
   // Using declaration so we overload the default implementation in this namespace:
   //
   using boost::math::tools::gcd;
}

} // namespace boost::math::tools

#endif