boost/phoenix/stl/container/detail/container.hpp
/*=============================================================================
Copyright (c) 2004 Angus Leeming
Copyright (c) 2004 Joel de Guzman
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef BOOST_PHOENIX_CONTAINER_DETAIL_CONTAINER_HPP
#define BOOST_PHOENIX_CONTAINER_DETAIL_CONTAINER_HPP
#include <utility>
#include <boost/mpl/eval_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_convertible.hpp>
namespace boost { namespace phoenix { namespace stl
{
///////////////////////////////////////////////////////////////////////////////
//
// Metafunctions "value_type_of", "key_type_of" etc.
//
// These metafunctions define a typedef "type" that returns the nested
// type if it exists. If not then the typedef returns void.
//
// For example, "value_type_of<std::vector<int> >::type" is "int" whilst
// "value_type_of<double>::type" is "void".
//
// I use a macro to define structs "value_type_of" etc simply to cut
// down on the amount of code. The macro is #undef-ed immediately after
// its final use.
//
/////////////////////////////////////////////////////////////////c//////////////
#define MEMBER_TYPE_OF(MEMBER_TYPE) \
template <typename C> \
struct BOOST_PP_CAT(MEMBER_TYPE, _of) \
{ \
typedef typename C::MEMBER_TYPE type; \
}
MEMBER_TYPE_OF(allocator_type);
MEMBER_TYPE_OF(const_iterator);
MEMBER_TYPE_OF(const_reference);
MEMBER_TYPE_OF(const_reverse_iterator);
MEMBER_TYPE_OF(container_type);
MEMBER_TYPE_OF(data_type);
MEMBER_TYPE_OF(iterator);
MEMBER_TYPE_OF(key_compare);
MEMBER_TYPE_OF(key_type);
MEMBER_TYPE_OF(reference);
MEMBER_TYPE_OF(reverse_iterator);
MEMBER_TYPE_OF(size_type);
MEMBER_TYPE_OF(value_compare);
MEMBER_TYPE_OF(value_type);
#undef MEMBER_TYPE_OF
///////////////////////////////////////////////////////////////////////////////
//
// Const-Qualified types.
//
// Many of the stl member functions have const and non-const
// overloaded versions that return distinct types. For example:
//
// iterator begin();
// const_iterator begin() const;
//
// The three class templates defined below,
// const_qualified_reference_of, const_qualified_iterator_of
// and const_qualified_reverse_iterator_of provide a means to extract
// this return type automatically.
//
///////////////////////////////////////////////////////////////////////////////
template <typename C>
struct const_qualified_reference_of
{
typedef typename
boost::mpl::eval_if_c<
boost::is_const<C>::value
, const_reference_of<C>
, reference_of<C>
>::type
type;
};
template <typename C>
struct const_qualified_iterator_of
{
typedef typename
boost::mpl::eval_if_c<
boost::is_const<C>::value
, const_iterator_of<C>
, iterator_of<C>
>::type
type;
};
template <typename C>
struct const_qualified_reverse_iterator_of
{
typedef typename
boost::mpl::eval_if_c<
boost::is_const<C>::value
, const_reverse_iterator_of<C>
, reverse_iterator_of<C>
>::type
type;
};
///////////////////////////////////////////////////////////////////////////////
//
// has_mapped_type<C>
//
// Given a container C, determine if it is a map, multimap, unordered_map,
// or unordered_multimap by checking if it has a member type named "mapped_type".
//
///////////////////////////////////////////////////////////////////////////////
namespace stl_impl
{
struct one { char a[1]; };
struct two { char a[2]; };
template <typename C>
one has_mapped_type(typename C::mapped_type(*)());
template <typename C>
two has_mapped_type(...);
}
template <typename C>
struct has_mapped_type
: boost::mpl::bool_<
sizeof(stl_impl::has_mapped_type<C>(0)) == sizeof(stl_impl::one)
>
{};
///////////////////////////////////////////////////////////////////////////////
//
// has_key_type<C>
//
// Given a container C, determine if it is a Associative Container
// by checking if it has a member type named "key_type".
//
///////////////////////////////////////////////////////////////////////////////
namespace stl_impl
{
template <typename C>
one has_key_type(typename C::key_type(*)());
template <typename C>
two has_key_type(...);
}
template <typename C>
struct has_key_type
: boost::mpl::bool_<
sizeof(stl_impl::has_key_type<C>(0)) == sizeof(stl_impl::one)
>
{};
///////////////////////////////////////////////////////////////////////////////
//
// is_key_type_of<C, Arg>
//
// Lazy evaluation friendly predicate.
//
///////////////////////////////////////////////////////////////////////////////
template <typename C, typename Arg>
struct is_key_type_of
: boost::is_convertible<Arg, typename key_type_of<C>::type>
{};
///////////////////////////////////////////////////////////////////////////////
//
// map_insert_returns_pair<C>
//
// Distinguish a map from a multimap by checking the return type
// of its "insert" member function. A map returns a pair while
// a multimap returns an iterator.
//
///////////////////////////////////////////////////////////////////////////////
namespace stl_impl
{
// Cool implementation of map_insert_returns_pair by Daniel Wallin.
// Thanks Daniel!!! I owe you a Pizza!
template<class A, class B>
one map_insert_returns_pair_check(std::pair<A,B> const&);
template <typename T>
two map_insert_returns_pair_check(T const&);
template <typename C>
struct map_insert_returns_pair
{
static typename C::value_type const& get;
BOOST_STATIC_CONSTANT(int,
value = sizeof(
map_insert_returns_pair_check(((C*)0)->insert(get))));
typedef boost::mpl::bool_<value == sizeof(one)> type;
};
}
template <typename C>
struct map_insert_returns_pair
: stl_impl::map_insert_returns_pair<C>::type {};
}}} // namespace boost::phoenix::stl
#endif // BOOST_PHOENIX_STL_CONTAINER_TRAITS_HPP