boost/interprocess/detail/windows_intermodule_singleton.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2009-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_WINDOWS_INTERMODULE_SINGLETON_HPP
#define BOOST_INTERPROCESS_WINDOWS_INTERMODULE_SINGLETON_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/container/string.hpp>
#if !defined(BOOST_INTERPROCESS_WINDOWS)
#error "This header can't be included from non-windows operating systems"
#endif
#include <boost/assert.hpp>
#include <boost/interprocess/detail/intermodule_singleton_common.hpp>
#include <boost/interprocess/sync/windows/winapi_semaphore_wrapper.hpp>
#include <boost/interprocess/sync/windows/winapi_mutex_wrapper.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <boost/cstdint.hpp>
#include <string>
#include <boost/container/map.hpp>
namespace boost{
namespace interprocess{
namespace ipcdetail{
namespace intermodule_singleton_helpers {
//This global map will be implemented using 3 sync primitives:
//
//1) A named mutex that will implement global mutual exclusion between
// threads from different modules/dlls
//
//2) A semaphore that will act as a global counter for modules attached to the global map
// so that the global map can be destroyed when the last module is detached.
//
//3) A semaphore that will be hacked to hold the address of a heap-allocated map in the
// max and current semaphore count.
class windows_semaphore_based_map
{
typedef boost::container::map<boost::container::string, ref_count_ptr> map_type;
public:
windows_semaphore_based_map()
{
map_type *m = new map_type;
boost::uint32_t initial_count = 0;
boost::uint32_t max_count = 0;
//Windows user address space sizes:
//32 bit windows: [32 bit processes] 2GB or 3GB (31/32 bits)
//64 bit windows: [32 bit processes] 2GB or 4GB (31/32 bits)
// [64 bit processes] 2GB or 8TB (31/43 bits)
//
//Windows semaphores use 'long' parameters (32 bits in LLP64 data model) and
//those values can't be negative, so we have 31 bits to store something
//in max_count and initial count parameters.
//Also, max count must be bigger than 0 and bigger or equal than initial count.
if(sizeof(void*) == sizeof(boost::uint32_t)){
//This means that for 32 bit processes, a semaphore count (31 usable bits) is
//enough to store 4 byte aligned memory (4GB -> 32 bits - 2 bits = 30 bits).
//The max count will hold the pointer value and current semaphore count
//will be zero.
//
//Relying in UB with a cast through union, but all known windows compilers
//accept this (C11 also accepts this).
union caster_union
{
void *addr;
boost::uint32_t addr_uint32;
} caster;
caster.addr = m;
//memory is at least 4 byte aligned in windows
BOOST_ASSERT((caster.addr_uint32 & boost::uint32_t(3)) == 0);
max_count = caster.addr_uint32 >> 2;
}
else if(sizeof(void*) == sizeof(boost::uint64_t)){
//Relying in UB with a cast through union, but all known windows compilers
//accept this (C11 accepts this).
union caster_union
{
void *addr;
boost::uint64_t addr_uint64;
} caster;
caster.addr = m;
//We'll encode the address using 30 bits in each 32 bit high and low parts.
//High part will be the sem max count, low part will be the sem initial count.
//(restrictions: max count > 0, initial count >= 0 and max count >= initial count):
//
// - Low part will be shifted two times (4 byte alignment) so that top
// two bits are cleared (the top one for sign, the next one to
// assure low part value is always less than the high part value.
// - The top bit of the high part will be cleared and the next bit will be 1
// (so high part is always bigger than low part due to the quasi-top bit).
//
// This means that the addresses we can store must be 4 byte aligned
// and less than 1 ExbiBytes ( 2^60 bytes, ~1 ExaByte). User-level address space in Windows 64
// is much less than this (8TB, 2^43 bytes): "1 EByte (or it was 640K?) ought to be enough for anybody" ;-).
caster.addr = m;
BOOST_ASSERT((caster.addr_uint64 & boost::uint64_t(3)) == 0);
max_count = boost::uint32_t(caster.addr_uint64 >> 32);
initial_count = boost::uint32_t(caster.addr_uint64 & boost::uint64_t(0x00000000FFFFFFFF));
initial_count = initial_count/4;
//Make sure top two bits are zero
BOOST_ASSERT((max_count & boost::uint32_t(0xC0000000)) == 0);
//Set quasi-top bit
max_count |= boost::uint32_t(0x40000000);
}
bool created = false;
const permissions & perm = permissions();
std::string pid_creation_time, name;
get_pid_creation_time_str(pid_creation_time);
name = "bipc_gmap_sem_lock_";
name += pid_creation_time;
bool success = m_mtx_lock.open_or_create(name.c_str(), perm);
name = "bipc_gmap_sem_count_";
name += pid_creation_time;
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
{
success = success && m_sem_count.open_or_create
( name.c_str(), static_cast<long>(0), winapi_semaphore_wrapper::MaxCount, perm, created);
name = "bipc_gmap_sem_map_";
name += pid_creation_time;
success = success && m_sem_map.open_or_create
(name.c_str(), (long)initial_count, (long)max_count, perm, created);
if(!success){
delete m;
//winapi_xxx wrappers do the cleanup...
throw int(0);
}
if(!created){
delete m;
}
else{
BOOST_ASSERT(&get_map_unlocked() == m);
}
m_sem_count.post();
}
}
map_type &get_map_unlocked()
{
if(sizeof(void*) == sizeof(boost::uint32_t)){
union caster_union
{
void *addr;
boost::uint32_t addr_uint32;
} caster;
caster.addr = 0;
caster.addr_uint32 = boost::uint32_t(m_sem_map.limit());
caster.addr_uint32 = caster.addr_uint32 << 2u;
return *static_cast<map_type*>(caster.addr);
}
else{
union caster_union
{
void *addr;
boost::uint64_t addr_uint64;
} caster;
boost::uint32_t max_count(boost::uint32_t(m_sem_map.limit()))
, initial_count(boost::uint32_t(m_sem_map.value()));
//Clear quasi-top bit
max_count &= boost::uint32_t(0xBFFFFFFF);
caster.addr_uint64 = max_count;
caster.addr_uint64 = caster.addr_uint64 << 32u;
caster.addr_uint64 |= boost::uint64_t(initial_count) << 2;
return *static_cast<map_type*>(caster.addr);
}
}
ref_count_ptr *find(const char *name)
{
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
map_type &map = this->get_map_unlocked();
map_type::iterator it = map.find(boost::container::string(name));
if(it != map.end()){
return &it->second;
}
else{
return 0;
}
}
ref_count_ptr * insert(const char *name, const ref_count_ptr &ref)
{
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
map_type &map = this->get_map_unlocked();
map_type::iterator it = map.insert(map_type::value_type(boost::container::string(name), ref)).first;
return &it->second;
}
bool erase(const char *name)
{
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
map_type &map = this->get_map_unlocked();
return map.erase(boost::container::string(name)) != 0;
}
template<class F>
void atomic_func(F &f)
{
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
f();
}
~windows_semaphore_based_map()
{
scoped_lock<winapi_mutex_wrapper> lck(m_mtx_lock);
m_sem_count.wait();
if(0 == m_sem_count.value()){
map_type &map = this->get_map_unlocked();
BOOST_ASSERT(map.empty());
delete ↦
}
//First close sems to protect this with the external mutex
m_sem_map.close();
m_sem_count.close();
//Once scoped_lock unlocks the mutex, the destructor will close the handle...
}
private:
winapi_mutex_wrapper m_mtx_lock;
winapi_semaphore_wrapper m_sem_map;
winapi_semaphore_wrapper m_sem_count;
};
template<>
struct thread_safe_global_map_dependant<windows_semaphore_based_map>
{
static void apply_gmem_erase_logic(const char *, const char *){}
static bool remove_old_gmem()
{ return true; }
struct lock_file_logic
{
lock_file_logic(windows_semaphore_based_map &)
: retry_with_new_map(false)
{}
void operator()(void){}
bool retry() const { return retry_with_new_map; }
private:
const bool retry_with_new_map;
};
static void construct_map(void *addr)
{
::new (addr)windows_semaphore_based_map;
}
struct unlink_map_logic
{
unlink_map_logic(windows_semaphore_based_map &)
{}
void operator()(){}
};
static ref_count_ptr *find(windows_semaphore_based_map &map, const char *name)
{
return map.find(name);
}
static ref_count_ptr * insert(windows_semaphore_based_map &map, const char *name, const ref_count_ptr &ref)
{
return map.insert(name, ref);
}
static bool erase(windows_semaphore_based_map &map, const char *name)
{
return map.erase(name);
}
template<class F>
static void atomic_func(windows_semaphore_based_map &map, F &f)
{
map.atomic_func(f);
}
};
} //namespace intermodule_singleton_helpers {
template<typename C, bool LazyInit = true, bool Phoenix = false>
class windows_intermodule_singleton
: public intermodule_singleton_impl
< C
, LazyInit
, Phoenix
, intermodule_singleton_helpers::windows_semaphore_based_map
>
{};
} //namespace ipcdetail{
} //namespace interprocess{
} //namespace boost{
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_WINDOWS_INTERMODULE_SINGLETON_HPP