...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
boost::interprocess::flat_multiset
// In header: <boost/interprocess/containers/flat_set.hpp> template<typename T, typename Pred, typename Alloc> class flat_multiset { public: // types typedef tree_t::key_type key_type; typedef tree_t::value_type value_type; typedef tree_t::pointer pointer; typedef tree_t::const_pointer const_pointer; typedef tree_t::reference reference; typedef tree_t::const_reference const_reference; typedef tree_t::key_compare key_compare; typedef tree_t::value_compare value_compare; typedef tree_t::iterator iterator; typedef tree_t::const_iterator const_iterator; typedef tree_t::reverse_iterator reverse_iterator; typedef tree_t::const_reverse_iterator const_reverse_iterator; typedef tree_t::size_type size_type; typedef tree_t::difference_type difference_type; typedef tree_t::allocator_type allocator_type; typedef tree_t::stored_allocator_type stored_allocator_type; // construct/copy/destruct flat_multiset(const Pred & = Pred(), const allocator_type & = allocator_type()); template<typename InputIterator> flat_multiset(InputIterator, InputIterator, const Pred & = Pred(), const allocator_type & = allocator_type()); flat_multiset(const flat_multiset< T, Pred, Alloc > &); flat_multiset(flat_multiset< T, Pred, Alloc > &&); flat_multiset& operator=(const flat_multiset< T, Pred, Alloc > &); flat_multiset& operator=(flat_multiset< T, Pred, Alloc > &&); // public member functions key_compare key_comp() const; value_compare value_comp() const; allocator_type get_allocator() const; const stored_allocator_type & get_stored_allocator() const; stored_allocator_type & get_stored_allocator() ; iterator begin() ; const_iterator begin() const; const_iterator cbegin() const; iterator end() ; const_iterator end() const; const_iterator cend() const; reverse_iterator rbegin() ; const_reverse_iterator rbegin() const; const_reverse_iterator crbegin() const; reverse_iterator rend() ; const_reverse_iterator rend() const; const_reverse_iterator crend() const; bool empty() const; size_type size() const; size_type max_size() const; void swap(flat_multiset &&) ; iterator insert(const value_type &) ; iterator insert(value_type &&) ; iterator insert(const_iterator, const value_type &) ; iterator insert(const_iterator, value_type &&) ; template<typename InputIterator> void insert(InputIterator, InputIterator) ; iterator emplace() ; iterator emplace_hint(const_iterator) ; iterator erase(const_iterator) ; size_type erase(const key_type &) ; iterator erase(const_iterator, const_iterator) ; void clear() ; void shrink_to_fit() ; iterator find(const key_type &) ; const_iterator find(const key_type &) const; size_type count(const key_type &) const; iterator lower_bound(const key_type &) ; const_iterator lower_bound(const key_type &) const; iterator upper_bound(const key_type &) ; const_iterator upper_bound(const key_type &) const; std::pair< const_iterator, const_iterator > equal_range(const key_type &) const; std::pair< iterator, iterator > equal_range(const key_type &) ; size_type capacity() const; void reserve(size_type) ; };
flat_multiset is a Sorted Associative Container that stores objects of type Key. flat_multiset is a Simple Associative Container, meaning that its value type, as well as its key type, is Key. flat_Multiset can store multiple copies of the same key value.
flat_multiset is similar to std::multiset but it's implemented like an ordered vector. This means that inserting a new element into a flat_multiset invalidates previous iterators and references
Erasing an element of a flat_multiset invalidates iterators and references pointing to elements that come after (their keys are equal or bigger) the erased element.
flat_multiset
public
construct/copy/destructflat_multiset(const Pred & comp = Pred(), const allocator_type & a = allocator_type());
template<typename InputIterator> flat_multiset(InputIterator first, InputIterator last, const Pred & comp = Pred(), const allocator_type & a = allocator_type());
flat_multiset(const flat_multiset< T, Pred, Alloc > & x);
flat_multiset(flat_multiset< T, Pred, Alloc > && x);
flat_multiset& operator=(const flat_multiset< T, Pred, Alloc > & x);
flat_multiset& operator=(flat_multiset< T, Pred, Alloc > && mx);
flat_multiset
public member functionskey_compare key_comp() const;
Effects: Returns the comparison object out of which a was constructed.
Complexity: Constant.
value_compare value_comp() const;
Effects: Returns an object of value_compare constructed out of the comparison object.
Complexity: Constant.
allocator_type get_allocator() const;
Effects: Returns a copy of the Allocator that was passed to the object's constructor.
Complexity: Constant.
const stored_allocator_type & get_stored_allocator() const;
stored_allocator_type & get_stored_allocator() ;
iterator begin() ;
Effects: Returns an iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
const_iterator begin() const;
Effects: Returns a const_iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
const_iterator cbegin() const;
Effects: Returns a const_iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
iterator end() ;
Effects: Returns an iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
const_iterator end() const;
Effects: Returns a const_iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
const_iterator cend() const;
Effects: Returns a const_iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
reverse_iterator rbegin() ;
Effects: Returns a reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator rbegin() const;
Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator crbegin() const;
Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
reverse_iterator rend() ;
Effects: Returns a reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator rend() const;
Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator crend() const;
Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
bool empty() const;
Effects: Returns true if the container contains no elements.
Throws: Nothing.
Complexity: Constant.
size_type size() const;
Effects: Returns the number of the elements contained in the container.
Throws: Nothing.
Complexity: Constant.
size_type max_size() const;
Effects: Returns the largest possible size of the container.
Throws: Nothing.
Complexity: Constant.
void swap(flat_multiset && x) ;
Effects: Swaps the contents of *this and x. If this->allocator_type() != x.allocator_type() allocators are also swapped.
Throws: Nothing.
Complexity: Constant.
iterator insert(const value_type & x) ;
Effects: Inserts x and returns the iterator pointing to the newly inserted element.
Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.
Note: If an element it's inserted it might invalidate elements.
iterator insert(value_type && x) ;
Effects: Inserts a new value_type move constructed from x and returns the iterator pointing to the newly inserted element.
Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.
Note: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, const value_type & x) ;
Effects: Inserts a copy of x in the container. p is a hint pointing to where the insert should start to search.
Returns: An iterator pointing to the element with key equivalent to the key of x.
Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.
Note: If an element it's inserted it might invalidate elements.
iterator insert(const_iterator position, value_type && x) ;
Effects: Inserts a new value move constructed from x in the container. p is a hint pointing to where the insert should start to search.
Returns: An iterator pointing to the element with key equivalent to the key of x.
Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.
Note: If an element it's inserted it might invalidate elements.
template<typename InputIterator> void insert(InputIterator first, InputIterator last) ;
Requires: i, j are not iterators into *this.
Effects: inserts each element from the range [i,j) .
Complexity: N log(size()+N) (N is the distance from i to j) search time plus N*size() insertion time.
Note: If an element it's inserted it might invalidate elements.
iterator emplace() ;
iterator emplace_hint(const_iterator hint) ;
iterator erase(const_iterator position) ;
Effects: Erases the element pointed to by position.
Returns: Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns end().
Complexity: Linear to the elements with keys bigger than position
Note: Invalidates elements with keys not less than the erased element.
size_type erase(const key_type & x) ;
Effects: Erases all elements in the container with key equivalent to x.
Returns: Returns the number of erased elements.
Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last) ;
Effects: Erases all the elements in the range [first, last).
Returns: Returns last.
Complexity: size()*N where N is the distance from first to last.
Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.
void clear() ;
Effects: erase(a.begin(),a.end()).
Postcondition: size() == 0.
Complexity: linear in size().
void shrink_to_fit() ;Effects
Throws: If memory allocation throws, or T's copy constructor throws.
Complexity: Linear to size().
iterator find(const key_type & x) ;
Returns: An iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.
Complexity: Logarithmic.
const_iterator find(const key_type & x) const;
Returns: A const_iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.
Complexity: Logarithmic.s
size_type count(const key_type & x) const;
Returns: The number of elements with key equivalent to x.
Complexity: log(size())+count(k)
iterator lower_bound(const key_type & x) ;
Returns: An iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.
Complexity: Logarithmic
const_iterator lower_bound(const key_type & x) const;
Returns: A const iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.
Complexity: Logarithmic
iterator upper_bound(const key_type & x) ;
Returns: An iterator pointing to the first element with key not less than x, or end() if such an element is not found.
Complexity: Logarithmic
const_iterator upper_bound(const key_type & x) const;
Returns: A const iterator pointing to the first element with key not less than x, or end() if such an element is not found.
Complexity: Logarithmic
std::pair< const_iterator, const_iterator > equal_range(const key_type & x) const;
Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
Complexity: Logarithmic
std::pair< iterator, iterator > equal_range(const key_type & x) ;
Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
Complexity: Logarithmic
size_type capacity() const;
Effects: Number of elements for which memory has been allocated. capacity() is always greater than or equal to size().
Throws: Nothing.
Complexity: Constant.
void reserve(size_type count) ;
Effects: If n is less than or equal to capacity(), this call has no effect. Otherwise, it is a request for allocation of additional memory. If the request is successful, then capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
Throws: If memory allocation allocation throws or T's copy constructor throws.
Note: If capacity() is less than "count", iterators and references to to values might be invalidated.