boost/container/set.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_SET_HPP
#define BOOST_CONTAINER_SET_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <boost/move/move.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/tree.hpp>
#include <boost/move/move.hpp>
#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
#include <boost/container/detail/preprocessor.hpp>
#endif
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#else
namespace boost {
namespace container {
#endif
/// @cond
// Forward declarations of operators < and ==, needed for friend declaration.
template <class T, class Pred, class A>
inline bool operator==(const set<T,Pred,A>& x,
const set<T,Pred,A>& y);
template <class T, class Pred, class A>
inline bool operator<(const set<T,Pred,A>& x,
const set<T,Pred,A>& y);
/// @endcond
//! A set is a kind of associative container that supports unique keys (contains at
//! most one of each key value) and provides for fast retrieval of the keys themselves.
//! Class set supports bidirectional iterators.
//!
//! A set satisfies all of the requirements of a container and of a reversible container
//! , and of an associative container. A set also provides most operations described in
//! for unique keys.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class set
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(set)
typedef container_detail::rbtree<T, T,
container_detail::identity<T>, Pred, A> tree_t;
tree_t m_tree; // red-black tree representing set
typedef typename container_detail::
move_const_ref_type<T>::type insert_const_ref_type;
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef Pred key_compare;
typedef Pred value_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
//! <b>Effects</b>: Default constructs an empty set.
//!
//! <b>Complexity</b>: Constant.
set()
: m_tree()
{}
//! <b>Effects</b>: Constructs an empty set using the specified comparison object
//! and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit set(const Pred& comp,
const allocator_type& a = allocator_type())
: m_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty set using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
set(InputIterator first, InputIterator last, const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(first, last, comp, a, true)
{}
//! <b>Effects</b>: Constructs an empty set using the specified comparison object and
//! allocator, and inserts elements from the ordered unique range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
//! unique values.
//!
//! <b>Complexity</b>: Linear in N.
template <class InputIterator>
set( ordered_unique_range_t, InputIterator first, InputIterator last
, const Pred& comp = Pred(), const allocator_type& a = allocator_type())
: m_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a set.
//!
//! <b>Complexity</b>: Linear in x.size().
set(const set& x)
: m_tree(x.m_tree)
{}
//! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
set(BOOST_RV_REF(set) x)
: m_tree(boost::move(x.m_tree))
{}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
set& operator=(BOOST_COPY_ASSIGN_REF(set) x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
set& operator=(BOOST_RV_REF(set) x)
{ m_tree = boost::move(x.m_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant
iterator begin()
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return m_tree.cbegin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return m_tree.cend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return m_tree.crbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return m_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(set& x)
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(insert_const_ref_type x)
{ return priv_insert(x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
std::pair<iterator,bool> insert(T &x)
{ return this->insert(const_cast<const T &>(x)); }
template<class U>
std::pair<iterator,bool> insert(const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return priv_insert(u); }
#endif
//! <b>Effects</b>: Move constructs a new value from x if and only if there is
//! no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
{ return m_tree.insert_unique(boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator p, insert_const_ref_type x)
{ return priv_insert(p, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
iterator insert(const_iterator position, T &x)
{ return this->insert(position, const_cast<const T &>(x)); }
template<class U>
iterator insert( const_iterator position, const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return priv_insert(position, u); }
#endif
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(const_iterator p, BOOST_RV_REF(value_type) x)
{ return m_tree.insert_unique(p, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_unique(first, last); }
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object x of type T constructed with
//! std::forward<Args>(args)... if and only if there is
//! no element in the container with equivalent value.
//! and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Logarithmic.
template <class... Args>
std::pair<iterator,bool> emplace(Args&&... args)
{ return m_tree.emplace_unique(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... if and only if there is
//! no element in the container with equivalent value.
//! p is a hint pointing to where the insert
//! should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_unique(hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by p.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator p)
{ return m_tree.erase(p); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x)
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last)
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_tree.clear(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: A const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_tree.find(x) == m_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator>
equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator>
equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const set<K1,C1,A1>&, const set<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const set<K1,C1,A1>&, const set<K1,C1,A1>&);
private:
std::pair<iterator, bool> priv_insert(const T &x)
{ return m_tree.insert_unique(x); }
iterator priv_insert(const_iterator p, const T &x)
{ return m_tree.insert_unique(p, x); }
/// @endcond
};
template <class T, class Pred, class A>
inline bool operator==(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return x.m_tree == y.m_tree; }
template <class T, class Pred, class A>
inline bool operator<(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return x.m_tree < y.m_tree; }
template <class T, class Pred, class A>
inline bool operator!=(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return !(x == y); }
template <class T, class Pred, class A>
inline bool operator>(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return y < x; }
template <class T, class Pred, class A>
inline bool operator<=(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return !(y < x); }
template <class T, class Pred, class A>
inline bool operator>=(const set<T,Pred,A>& x,
const set<T,Pred,A>& y)
{ return !(x < y); }
template <class T, class Pred, class A>
inline void swap(set<T,Pred,A>& x, set<T,Pred,A>& y)
{ x.swap(y); }
/// @cond
} //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::container::set<T, C, A> >
{
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
namespace container {
// Forward declaration of operators < and ==, needed for friend declaration.
template <class T, class Pred, class A>
inline bool operator==(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y);
template <class T, class Pred, class A>
inline bool operator<(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y);
/// @endcond
//! A multiset is a kind of associative container that supports equivalent keys
//! (possibly contains multiple copies of the same key value) and provides for
//! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators.
//!
//! A multiset satisfies all of the requirements of a container and of a reversible
//! container, and of an associative container). multiset also provides most operations
//! described for duplicate keys.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Pred = std::less<T>, class A = std::allocator<T> >
#else
template <class T, class Pred, class A>
#endif
class multiset
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(multiset)
typedef container_detail::rbtree<T, T,
container_detail::identity<T>, Pred, A> tree_t;
tree_t m_tree; // red-black tree representing multiset
typedef typename container_detail::
move_const_ref_type<T>::type insert_const_ref_type;
/// @endcond
public:
// typedefs:
typedef typename tree_t::key_type key_type;
typedef typename tree_t::value_type value_type;
typedef typename tree_t::pointer pointer;
typedef typename tree_t::const_pointer const_pointer;
typedef typename tree_t::reference reference;
typedef typename tree_t::const_reference const_reference;
typedef Pred key_compare;
typedef Pred value_compare;
typedef typename tree_t::iterator iterator;
typedef typename tree_t::const_iterator const_iterator;
typedef typename tree_t::reverse_iterator reverse_iterator;
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
typedef typename tree_t::size_type size_type;
typedef typename tree_t::difference_type difference_type;
typedef typename tree_t::allocator_type allocator_type;
typedef typename tree_t::stored_allocator_type stored_allocator_type;
//! <b>Effects</b>: Constructs an empty multiset using the specified comparison
//! object and allocator.
//!
//! <b>Complexity</b>: Constant.
multiset()
: m_tree()
{}
//! <b>Effects</b>: Constructs an empty multiset using the specified comparison
//! object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit multiset(const Pred& comp,
const allocator_type& a = allocator_type())
: m_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty multiset using the specified comparison object
//! and allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
multiset(InputIterator first, InputIterator last,
const Pred& comp = Pred(),
const allocator_type& a = allocator_type())
: m_tree(first, last, comp, a, false)
{}
//! <b>Effects</b>: Constructs an empty multiset using the specified comparison object and
//! allocator, and inserts elements from the ordered range [first ,last ). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
//!
//! <b>Complexity</b>: Linear in N.
template <class InputIterator>
multiset( ordered_range_t ordered_range, InputIterator first, InputIterator last
, const Pred& comp = Pred()
, const allocator_type& a = allocator_type())
: m_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a multiset.
//!
//! <b>Complexity</b>: Linear in x.size().
multiset(const multiset& x)
: m_tree(x.m_tree)
{}
//! <b>Effects</b>: Move constructs a multiset. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Construct.
//!
//! <b>Postcondition</b>: x is emptied.
multiset(BOOST_RV_REF(multiset) x)
: m_tree(boost::move(x.m_tree))
{}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
multiset& operator=(BOOST_COPY_ASSIGN_REF(multiset) x)
{ m_tree = x.m_tree; return *this; }
//! <b>Effects</b>: this->swap(x.get()).
//!
//! <b>Complexity</b>: Constant.
multiset& operator=(BOOST_RV_REF(multiset) x)
{ m_tree = boost::move(x.m_tree); return *this; }
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_tree.key_comp(); }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return m_tree.get_allocator(); }
const stored_allocator_type &get_stored_allocator() const
{ return m_tree.get_stored_allocator(); }
stored_allocator_type &get_stored_allocator()
{ return m_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_tree.begin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return m_tree.end(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return m_tree.rbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return m_tree.rend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return m_tree.cbegin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return m_tree.cend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return m_tree.crbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return m_tree.crend(); }
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return m_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return m_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return m_tree.max_size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(multiset& x)
{ m_tree.swap(x.m_tree); }
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
iterator insert(insert_const_ref_type x)
{ return priv_insert(x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
iterator insert(T &x)
{ return this->insert(const_cast<const T &>(x)); }
template<class U>
iterator insert(const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return priv_insert(u); }
#endif
//! <b>Effects</b>: Inserts a copy of x in the container.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(BOOST_RV_REF(value_type) x)
{ return m_tree.insert_equal(boost::move(x)); }
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator p, insert_const_ref_type x)
{ return priv_insert(p, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
iterator insert(const_iterator position, T &x)
{ return this->insert(position, const_cast<const T &>(x)); }
template<class U>
iterator insert( const_iterator position, const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return priv_insert(position, u); }
#endif
//! <b>Effects</b>: Inserts a value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
iterator insert(const_iterator p, BOOST_RV_REF(value_type) x)
{ return m_tree.insert_equal(p, boost::move(x)); }
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) .
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_tree.insert_equal(first, last); }
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_tree.emplace_equal(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)...
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
//! is inserted right before p.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_tree.emplace_hint_equal(hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element pointed to by p.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Amortized constant time
iterator erase(const_iterator p)
{ return m_tree.erase(p); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: log(size()) + count(k)
size_type erase(const key_type& x)
{ return m_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
iterator erase(const_iterator first, const_iterator last)
{ return m_tree.erase(first, last); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear()
{ m_tree.clear(); }
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_tree.find(x); }
//! <b>Returns</b>: A const iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
const_iterator find(const key_type& x) const
{ return m_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_tree.upper_bound(x); }
//! <b>Returns</b>: A const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator>
equal_range(const key_type& x)
{ return m_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator>
equal_range(const key_type& x) const
{ return m_tree.equal_range(x); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const multiset<K1,C1,A1>&,
const multiset<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const multiset<K1,C1,A1>&,
const multiset<K1,C1,A1>&);
private:
iterator priv_insert(const T &x)
{ return m_tree.insert_equal(x); }
iterator priv_insert(const_iterator p, const T &x)
{ return m_tree.insert_equal(p, x); }
/// @endcond
};
template <class T, class Pred, class A>
inline bool operator==(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return x.m_tree == y.m_tree; }
template <class T, class Pred, class A>
inline bool operator<(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return x.m_tree < y.m_tree; }
template <class T, class Pred, class A>
inline bool operator!=(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return !(x == y); }
template <class T, class Pred, class A>
inline bool operator>(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return y < x; }
template <class T, class Pred, class A>
inline bool operator<=(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return !(y < x); }
template <class T, class Pred, class A>
inline bool operator>=(const multiset<T,Pred,A>& x,
const multiset<T,Pred,A>& y)
{ return !(x < y); }
template <class T, class Pred, class A>
inline void swap(multiset<T,Pred,A>& x, multiset<T,Pred,A>& y)
{ x.swap(y); }
/// @cond
} //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class C, class A>
struct has_trivial_destructor_after_move<boost::container::multiset<T, C, A> >
{
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
namespace container {
/// @endcond
}}
#include <boost/container/detail/config_end.hpp>
#endif /* BOOST_CONTAINER_SET_HPP */