...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
STL and most other containers value initialize new elements in common operations
like vector::resize(size_type n)
or explicit
vector::vector(size_type n)
.
In some performance-sensitive environments, where vectors are used as a replacement for variable-size buffers for file or network operations, value initialization is a cost that is not negligible as elements are going to be overwritten by an external source shortly after new elements are added to the container.
Boost.Container offers two new members for
vector
, static_vector
and stable_vector
: explicit container::container(size_type n, default_init_t)
and explicit
container::resize(size_type n, default_init_t)
, where new elements are constructed using
default
initialization.
When filling associative containers big performance gains can be achieved
if the input range to be inserted is guaranteed by the user to be ordered
according to the predicate. This can happen when inserting values from a
set
to a multiset
or between different associative container families ([multi]set/map
vs. flat_[multi]set/map
).
Boost.Container has some overloads for constructors
and insertions taking an ordered_unique_range_t
or an ordered_range_t
tag
parameters as the first argument. When an ordered_unique_range_t
overload is used, the user notifies the container that the input range is
ordered according to the container predicate and has no duplicates. When
an ordered_range_t
overload
is used, the user notifies the container that the input range is ordered
according to the container predicate but it might have duplicates. With this
information, the container can avoid multiple predicate calls and improve
insertion times.
set
, multiset
,
map
and multimap
associative containers are implemented as binary search trees which offer
the needed complexity and stability guarantees required by the C++ standard
for associative containers.
Boost.Container offers the possibility to
configure at compile time some parameters of the binary search tree implementation.
This configuration is passed as the last template parameter and defined using
the utility class tree_assoc_options
.
The following parameters can be configured:
tree_type
).
By default these containers use a red-black tree but the user can use
other tree types:
optimize_size
).
By default this option is activated and is only meaningful to red-black
and avl trees (in other cases, this option will be ignored). This option
will try to put rebalancing metadata inside the "parent" pointer
of the node if the pointer type has enough alignment. Usually, due to
alignment issues, the metadata uses the size of a pointer yielding to
four pointer size overhead per node, whereas activating this option usually
leads to 3 pointer size overhead. Although some mask operations must
be performed to extract data from this special "parent" pointer,
in several systems this option also improves performance due to the improved
cache usage produced by the node size reduction.
See the following example to see how tree_assoc_options
can be used to customize these containers:
#include <boost/container/set.hpp> #include <cassert> int main () { using namespace boost::container; //First define several options // //This option specifies an AVL tree based associative container typedef tree_assoc_options< tree_type<avl_tree> >::type AVLTree; //This option specifies an AVL tree based associative container //disabling node size optimization. typedef tree_assoc_options< tree_type<avl_tree> , optimize_size<false> >::type AVLTreeNoSizeOpt; //This option specifies an Splay tree based associative container typedef tree_assoc_options< tree_type<splay_tree> >::type SplayTree; //Now define new tree-based associative containers // //AVLTree based set container typedef set<int, std::less<int>, std::allocator<int>, AVLTree> AvlSet; //AVLTree based set container without size optimization typedef set<int, std::less<int>, std::allocator<int>, AVLTreeNoSizeOpt> AvlSetNoSizeOpt; //Splay tree based multiset container typedef multiset<int, std::less<int>, std::allocator<int>, SplayTree> SplayMultiset; //Use them // AvlSet avl_set; avl_set.insert(0); assert(avl_set.find(0) != avl_set.end()); AvlSetNoSizeOpt avl_set_no_szopt; avl_set_no_szopt.insert(1); avl_set_no_szopt.insert(1); assert(avl_set_no_szopt.count(1) == 1); SplayMultiset splay_mset; splay_mset.insert(2); splay_mset.insert(2); assert(splay_mset.count(2) == 2); return 0; }
In the first C++ standard list::size()
was not required to be constant-time, and
that caused some controversy in the C++ community. Quoting Howard Hinnant's
On
List Size paper:
There is a considerable debate on whether
std::list<T>::size()
should be O(1) or O(N). The usual argument notes that it is a tradeoff with:
splice(iterator position, list& x, iterator first, iterator last);
If size() is O(1) and this != &x, then this method must perform a linear operation so that it can adjust the size member in each list
C++11 definitely required size()
to be O(1), so range splice became O(N).
However, Howard Hinnant's paper proposed a new splice
overload so that even O(1) list:size()
implementations could achieve O(1) range splice when the range size was known
to the caller:
void splice(iterator position, list& x, iterator first, iterator last, size_type n);
Effects: Inserts elements in the range [first, last) before position and removes the elements from x.
Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in the range [first, last). Invalidates only the iterators and references to the spliced elements. n == distance(first, last).
Throws: Nothing.
Complexity: Constant time.
This new splice signature allows the client to pass the distance of the input range in. This information is often available at the call site. If it is passed in, then the operation is constant time, even with an O(1) size.
Boost.Container implements this overload
for list
and a modified version
of it for slist
(as slist::size()
is also O(1)
).
Many C++ programmers have ever wondered where does good old realloc fit in
C++. And that's a good question. Could we improve vector
performance using memory expansion mechanisms to avoid too many copies? But
vector
is not the only
container that could benefit from an improved allocator interface: we could
take advantage of the insertion of multiple elements in list
using a burst allocation mechanism that could amortize costs (mutex locks,
free memory searches...) that can't be amortized when using single node allocation
strategies.
These improvements require extending the STL allocator interface and use make use of a new general purpose allocator since new and delete don't offer expansion and burst capabilities.
allocator
,
adaptive_pool
and node_allocator
classes.
allocator
,
adaptive_pool
and node_allocator
are header-only classes.
The following extended allocators are provided:
allocator
: This
extended allocator offers expansion, shrink-in place and burst allocation
capabilities implemented as a thin wrapper around the modified DLMalloc.
It can be used with all containers and it should be the default choice
when the programmer wants to use extended allocator capabilities.
node_allocator
:
It's a Simple
Segregated Storage allocator, similar to Boost.Pool
that takes advantage of the modified DLMalloc burst interface. It does
not return memory to the DLMalloc allocator (and thus, to the system),
unless explicitly requested. It does offer a very small memory overhead
so it's suitable for node containers ([boost::container::list list],
[boost::container::slist slist] [boost::container::set set]...) that
allocate very small value_type
s
and it offers improved node allocation times for single node allocations
with respecto to allocator
.
adaptive_pool
:
It's a low-overhead node allocator that can return memory to the system.
The overhead can be very low (< 5% for small nodes) and it's nearly
as fast as node_allocator
.
It's also suitable for node containers.
Use them simply specifying the new allocator in the corresponding template argument of your favourite container:
#include <boost/container/vector.hpp> #include <boost/container/flat_set.hpp> #include <boost/container/list.hpp> #include <boost/container/set.hpp> //"allocator" is a general purpose allocator that can reallocate //memory, something useful for vector and flat associative containers #include <boost/container/allocator.hpp> //"adaptive_pool" is a node allocator, specially suited for //node-based containers #include <boost/container/adaptive_pool.hpp> int main () { using namespace boost::container; //A vector that can reallocate memory to implement faster insertions vector<int, allocator<int> > extended_alloc_vector; //A flat set that can reallocate memory to implement faster insertions flat_set<int, std::less<int>, allocator<int> > extended_alloc_flat_set; //A list that can manages nodes to implement faster //range insertions and deletions list<int, adaptive_pool<int> > extended_alloc_list; //A set that can recycle nodes to implement faster //range insertions and deletions set<int, std::less<int>, adaptive_pool<int> > extended_alloc_set; //Now user them as always extended_alloc_vector.push_back(0); extended_alloc_flat_set.insert(0); extended_alloc_list.push_back(0); extended_alloc_set.insert(0); //... return 0; }