boost/math/special_functions/detail/hypergeometric_1F1_recurrence.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2014 Anton Bikineev
// Copyright 2014 Christopher Kormanyos
// Copyright 2014 John Maddock
// Copyright 2014 Paul Bristow
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_
#define BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_
#include <boost/math/special_functions/modf.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/math/tools/recurrence.hpp>
#include <boost/math/special_functions/detail/hypergeometric_pFq_checked_series.hpp>
namespace boost { namespace math { namespace detail {
// forward declaration for initial values
template <class T, class Policy>
inline T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol);
template <class T, class Policy>
inline T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol, long long& log_scaling);
template <class T>
struct hypergeometric_1F1_recurrence_a_coefficients
{
using result_type = boost::math::tuple<T, T, T>;
hypergeometric_1F1_recurrence_a_coefficients(const T& a, const T& b, const T& z):
a(a), b(b), z(z)
{
}
hypergeometric_1F1_recurrence_a_coefficients(const hypergeometric_1F1_recurrence_a_coefficients&) = default;
hypergeometric_1F1_recurrence_a_coefficients operator=(const hypergeometric_1F1_recurrence_a_coefficients&) = delete;
result_type operator()(std::intmax_t i) const
{
const T ai = a + i;
const T an = b - ai;
const T bn = (2 * ai - b + z);
const T cn = -ai;
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a;
const T b;
const T z;
};
template <class T>
struct hypergeometric_1F1_recurrence_b_coefficients
{
using result_type = boost::math::tuple<T, T, T>;
hypergeometric_1F1_recurrence_b_coefficients(const T& a, const T& b, const T& z):
a(a), b(b), z(z)
{
}
hypergeometric_1F1_recurrence_b_coefficients(const hypergeometric_1F1_recurrence_b_coefficients&) = default;
hypergeometric_1F1_recurrence_b_coefficients& operator=(const hypergeometric_1F1_recurrence_b_coefficients&) = delete;
result_type operator()(std::intmax_t i) const
{
const T bi = b + i;
const T an = bi * (bi - 1);
const T bn = bi * (1 - bi - z);
const T cn = z * (bi - a);
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a;
const T b;
const T z;
};
//
// for use when we're recursing to a small b:
//
template <class T>
struct hypergeometric_1F1_recurrence_small_b_coefficients
{
using result_type = boost::math::tuple<T, T, T>;
hypergeometric_1F1_recurrence_small_b_coefficients(const T& a, const T& b, const T& z, int N) :
a(a), b(b), z(z), N(N)
{
}
hypergeometric_1F1_recurrence_small_b_coefficients(const hypergeometric_1F1_recurrence_small_b_coefficients&) = default;
hypergeometric_1F1_recurrence_small_b_coefficients operator=(const hypergeometric_1F1_recurrence_small_b_coefficients&) = delete;
result_type operator()(std::intmax_t i) const
{
const T bi = b + (i + N);
const T bi_minus_1 = b + (i + N - 1);
const T an = bi * bi_minus_1;
const T bn = bi * (-bi_minus_1 - z);
const T cn = z * (bi - a);
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a;
const T b;
const T z;
int N;
};
template <class T>
struct hypergeometric_1F1_recurrence_a_and_b_coefficients
{
using result_type = boost::math::tuple<T, T, T>;
hypergeometric_1F1_recurrence_a_and_b_coefficients(const T& a, const T& b, const T& z, int offset = 0):
a(a), b(b), z(z), offset(offset)
{
}
hypergeometric_1F1_recurrence_a_and_b_coefficients(const hypergeometric_1F1_recurrence_a_and_b_coefficients&) = default;
hypergeometric_1F1_recurrence_a_and_b_coefficients operator=(const hypergeometric_1F1_recurrence_a_and_b_coefficients&) = delete;
result_type operator()(std::intmax_t i) const
{
const T ai = a + (offset + i);
const T bi = b + (offset + i);
const T an = bi * (b + (offset + i - 1));
const T bn = bi * (z - (b + (offset + i - 1)));
const T cn = -ai * z;
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a;
const T b;
const T z;
int offset;
};
#if 0
//
// These next few recurrence relations are archived for future reference, some of them are novel, though all
// are trivially derived from the existing well known relations:
//
// Recurrence relation for double-stepping on both a and b:
// - b(b-1)(b-2) / (2-b+z) M(a-2,b-2,z) + [b(a-1)z / (2-b+z) + b(1-b+z) + abz(b+1) /(b+1)(z-b)] M(a,b,z) - a(a+1)z^2 / (b+1)(z-b) M(a+2,b+2,z)
//
template <class T>
struct hypergeometric_1F1_recurrence_2a_and_2b_coefficients
{
typedef boost::math::tuple<T, T, T> result_type;
hypergeometric_1F1_recurrence_2a_and_2b_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
a(a), b(b), z(z), offset(offset)
{
}
result_type operator()(std::intmax_t i) const
{
i *= 2;
const T ai = a + (offset + i);
const T bi = b + (offset + i);
const T an = -bi * (b + (offset + i - 1)) * (b + (offset + i - 2)) / (-(b + (offset + i - 2)) + z);
const T bn = bi * (a + (offset + i - 1)) * z / (z - (b + (offset + i - 2)))
+ bi * (z - (b + (offset + i - 1)))
+ ai * bi * z * (b + (offset + i + 1)) / ((b + (offset + i + 1)) * (z - bi));
const T cn = -ai * (a + (offset + i + 1)) * z * z / ((b + (offset + i + 1)) * (z - bi));
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a, b, z;
int offset;
hypergeometric_1F1_recurrence_2a_and_2b_coefficients operator=(const hypergeometric_1F1_recurrence_2a_and_2b_coefficients&);
};
//
// Recurrence relation for double-stepping on a:
// -(b-a)(1 + b - a)/(2a-2-b+z)M(a-2,b,z) + [(b-a)(a-1)/(2a-2-b+z) + (2a-b+z) + a(b-a-1)/(2a+2-b+z)]M(a,b,z) -a(a+1)/(2a+2-b+z)M(a+2,b,z)
//
template <class T>
struct hypergeometric_1F1_recurrence_2a_coefficients
{
typedef boost::math::tuple<T, T, T> result_type;
hypergeometric_1F1_recurrence_2a_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
a(a), b(b), z(z), offset(offset)
{
}
result_type operator()(std::intmax_t i) const
{
i *= 2;
const T ai = a + (offset + i);
// -(b-a)(1 + b - a)/(2a-2-b+z)
const T an = -(b - ai) * (b - (a + (offset + i - 1))) / (2 * (a + (offset + i - 1)) - b + z);
const T bn = (b - ai) * (a + (offset + i - 1)) / (2 * (a + (offset + i - 1)) - b + z) + (2 * ai - b + z) + ai * (b - (a + (offset + i + 1))) / (2 * (a + (offset + i + 1)) - b + z);
const T cn = -ai * (a + (offset + i + 1)) / (2 * (a + (offset + i + 1)) - b + z);
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a, b, z;
int offset;
hypergeometric_1F1_recurrence_2a_coefficients operator=(const hypergeometric_1F1_recurrence_2a_coefficients&);
};
//
// Recurrence relation for double-stepping on b:
// b(b-1)^2(b-2)/((1-b)(2-b-z)) M(a,b-2,z) + [zb(b-1)(b-1-a)/((1-b)(2-b-z)) + b(1-b-z) + z(b-a)(b+1)b/((b+1)(b+z)) ] M(a,b,z) + z^2(b-a)(b+1-a)/((b+1)(b+z)) M(a,b+2,z)
//
template <class T>
struct hypergeometric_1F1_recurrence_2b_coefficients
{
typedef boost::math::tuple<T, T, T> result_type;
hypergeometric_1F1_recurrence_2b_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
a(a), b(b), z(z), offset(offset)
{
}
result_type operator()(std::intmax_t i) const
{
i *= 2;
const T bi = b + (offset + i);
const T bi_m1 = b + (offset + i - 1);
const T bi_p1 = b + (offset + i + 1);
const T bi_m2 = b + (offset + i - 2);
const T an = bi * (bi_m1) * (bi_m1) * (bi_m2) / (-bi_m1 * (-bi_m2 - z));
const T bn = z * bi * bi_m1 * (bi_m1 - a) / (-bi_m1 * (-bi_m2 - z)) + bi * (-bi_m1 - z) + z * (bi - a) * bi_p1 * bi / (bi_p1 * (bi + z));
const T cn = z * z * (bi - a) * (bi_p1 - a) / (bi_p1 * (bi + z));
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a, b, z;
int offset;
hypergeometric_1F1_recurrence_2b_coefficients operator=(const hypergeometric_1F1_recurrence_2b_coefficients&);
};
//
// Recurrence relation for a+ b-:
// -z(b-a)(a-1-b)/(b(a-1+z)) M(a-1,b+1,z) + [(b-a)(a-1)b/(b(a-1+z)) + (2a-b+z) + a(b-a-1)/(a+z)] M(a,b,z) + a(1-b)/(a+z) M(a+1,b-1,z)
//
// This is potentially the most useful of these novel recurrences.
// - - + - +
template <class T>
struct hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients
{
typedef boost::math::tuple<T, T, T> result_type;
hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
a(a), b(b), z(z), offset(offset)
{
}
result_type operator()(std::intmax_t i) const
{
const T ai = a + (offset + i);
const T bi = b - (offset + i);
const T an = -z * (bi - ai) * (ai - 1 - bi) / (bi * (ai - 1 + z));
const T bn = z * ((-1 / (ai + z) - 1 / (ai + z - 1)) * (bi + z - 1) + 3) + bi - 1;
const T cn = ai * (1 - bi) / (ai + z);
return boost::math::make_tuple(an, bn, cn);
}
private:
const T a, b, z;
int offset;
hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients operator=(const hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients&);
};
#endif
template <class T, class Policy>
inline T hypergeometric_1F1_backward_recurrence_for_negative_a(const T& a, const T& b, const T& z, const Policy& pol, const char* function, long long& log_scaling)
{
BOOST_MATH_STD_USING // modf, frexp, fabs, pow
std::intmax_t integer_part = 0;
T ak = modf(a, &integer_part);
//
// We need ak-1 positive to avoid infinite recursion below:
//
if (0 != ak)
{
ak += 2;
integer_part -= 2;
}
if (ak - 1 == b)
{
// When ak - 1 == b are recursion coefficients dissappear to zero and
// we end up with a NaN result. Reduce the recursion steps by 1 to
// avoid this. We rely on |b| small and therefore no infinite recursion.
ak -= 1;
integer_part += 1;
}
if (-integer_part > static_cast<std::intmax_t>(policies::get_max_series_iterations<Policy>()))
return policies::raise_evaluation_error<T>(function, "1F1 arguments sit in a range with a so negative that we have no evaluation method, got a = %1%", std::numeric_limits<T>::quiet_NaN(), pol);
T first {};
T second {};
if(ak == 0)
{
first = 1;
ak -= 1;
second = 1 - z / b;
if (fabs(second) < 0.5)
second = (b - z) / b; // cancellation avoidance
}
else
{
long long scaling1 {};
long long scaling2 {};
first = detail::hypergeometric_1F1_imp(ak, b, z, pol, scaling1);
ak -= 1;
second = detail::hypergeometric_1F1_imp(ak, b, z, pol, scaling2);
if (scaling1 != scaling2)
{
second *= exp(T(scaling2 - scaling1));
}
log_scaling += scaling1;
}
++integer_part;
detail::hypergeometric_1F1_recurrence_a_coefficients<T> s(ak, b, z);
return tools::apply_recurrence_relation_backward(s,
static_cast<unsigned int>(std::abs(integer_part)),
first,
second, &log_scaling);
}
template <class T, class Policy>
T hypergeometric_1F1_backwards_recursion_on_b_for_negative_a(const T& a, const T& b, const T& z, const Policy& pol, const char*, long long& log_scaling)
{
using std::swap;
BOOST_MATH_STD_USING // modf, frexp, fabs, pow
//
// We compute
//
// M[a + a_shift, b + b_shift; z]
//
// and recurse backwards on a and b down to
//
// M[a, b, z]
//
// With a + a_shift > 1 and b + b_shift > z
//
// There are 3 distinct regions to ensure stability during the recursions:
//
// a > 0 : stable for backwards on a
// a < 0, b > 0 : stable for backwards on a and b
// a < 0, b < 0 : stable for backwards on b (as long as |b| is small).
//
// We could simplify things by ignoring the middle region, but it's more efficient
// to recurse on a and b together when we can.
//
BOOST_MATH_ASSERT(a < -1); // Not tested nor taken for -1 < a < 0
int b_shift = itrunc(z - b) + 2;
int a_shift = itrunc(-a);
if (a + a_shift != 0)
{
a_shift += 2;
}
//
// If the shifts are so large that we would throw an evaluation_error, try the series instead,
// even though this will almost certainly throw as well:
//
if (b_shift > static_cast<std::intmax_t>(boost::math::policies::get_max_series_iterations<Policy>()))
return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling);
if (a_shift > static_cast<std::intmax_t>(boost::math::policies::get_max_series_iterations<Policy>()))
return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling);
int a_b_shift = b < 0 ? itrunc(b + b_shift) : b_shift; // The max we can shift on a and b together
int leading_a_shift = (std::min)(3, a_shift); // Just enough to make a negative
if (a_b_shift > a_shift - 3)
{
a_b_shift = a_shift < 3 ? 0 : a_shift - 3;
}
else
{
// Need to ensure that leading_a_shift is large enough that a will reach it's target
// after the first 2 phases (-,0) and (-,-) are over:
leading_a_shift = a_shift - a_b_shift;
}
int trailing_b_shift = b_shift - a_b_shift;
if (a_b_shift < 5)
{
// Might as well do things in two steps rather than 3:
if (a_b_shift > 0)
{
leading_a_shift += a_b_shift;
trailing_b_shift += a_b_shift;
}
a_b_shift = 0;
--leading_a_shift;
}
BOOST_MATH_ASSERT(leading_a_shift > 1);
BOOST_MATH_ASSERT(a_b_shift + leading_a_shift + (a_b_shift == 0 ? 1 : 0) == a_shift);
BOOST_MATH_ASSERT(a_b_shift + trailing_b_shift == b_shift);
if ((trailing_b_shift == 0) && (fabs(b) < 0.5) && a_b_shift)
{
// Better to have the final recursion on b alone, otherwise we lose precision when b is very small:
int diff = (std::min)(a_b_shift, 3);
a_b_shift -= diff;
leading_a_shift += diff;
trailing_b_shift += diff;
}
T first {};
T second {};
long long scale1 {};
long long scale2 {};
first = boost::math::detail::hypergeometric_1F1_imp(T(a + a_shift), T(b + b_shift), z, pol, scale1);
//
// It would be good to compute "second" from first and the ratio - unfortunately we are right on the cusp
// recursion on a switching from stable backwards to stable forwards behaviour and so this is not possible here.
//
second = boost::math::detail::hypergeometric_1F1_imp(T(a + a_shift - 1), T(b + b_shift), z, pol, scale2);
if (scale1 != scale2)
second *= exp(T(scale2 - scale1));
log_scaling += scale1;
//
// Now we have [a + a_shift, b + b_shift, z] and [a + a_shift - 1, b + b_shift, z]
// and want to recurse until [a + a_shift - leading_a_shift, b + b_shift, z] and [a + a_shift - leadng_a_shift - 1, b + b_shift, z]
// which is leading_a_shift -1 steps.
//
second = boost::math::tools::apply_recurrence_relation_backward(
hypergeometric_1F1_recurrence_a_coefficients<T>(a + a_shift - 1, b + b_shift, z),
leading_a_shift, first, second, &log_scaling, &first);
if (a_b_shift)
{
//
// Now we need to switch to an a+b shift so that we have:
// [a + a_shift - leading_a_shift, b + b_shift, z] and [a + a_shift - leadng_a_shift - 1, b + b_shift - 1, z]
// A&S 13.4.3 gives us what we need:
//
{
// local a's and b's:
T la = a + a_shift - leading_a_shift - 1;
T lb = b + b_shift;
second = ((1 + la - lb) * second - la * first) / (1 - lb);
}
//
// Now apply a_b_shift - 1 recursions to get down to
// [a + 1, b + trailing_b_shift + 1, z] and [a, b + trailing_b_shift, z]
//
second = boost::math::tools::apply_recurrence_relation_backward(
hypergeometric_1F1_recurrence_a_and_b_coefficients<T>(a, b + b_shift - a_b_shift, z, a_b_shift - 1),
a_b_shift - 1, first, second, &log_scaling, &first);
//
// Now we need to switch to a b shift, a different application of A&S 13.4.3
// will get us there, we leave "second" where it is, and move "first" sideways:
//
{
T lb = b + trailing_b_shift + 1;
first = (second * (lb - 1) - a * first) / -(1 + a - lb);
}
}
else
{
//
// We have M[a+1, b+b_shift, z] and M[a, b+b_shift, z] and need M[a, b+b_shift-1, z] for
// recursion on b: A&S 13.4.3 gives us what we need.
//
T third = -(second * (1 + a - b - b_shift) - first * a) / (b + b_shift - 1);
swap(first, second);
swap(second, third);
--trailing_b_shift;
}
//
// Finish off by applying trailing_b_shift recursions:
//
if (trailing_b_shift)
{
second = boost::math::tools::apply_recurrence_relation_backward(
hypergeometric_1F1_recurrence_small_b_coefficients<T>(a, b, z, trailing_b_shift),
trailing_b_shift, first, second, &log_scaling);
}
return second;
}
} } } // namespaces
#endif // BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_